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1 Introduction

Hořava’s “Lifschitz point gravity” [1–3], a field theoretic quantum gravity model based on

“anisotropic scaling” of the space and time dimensions, has recently attracted a tremen-

dous amount of attention. Compared to traditional approaches, this model exhibits a

vastly improved ultra-violet behavior — it is certainly power-counting renormalizable, and

arguably actually finite [1–3]. Early discussion regarding this model includes [4–36]. In

particular, while Hořava’s specific model of “Lifschitz point gravity” as described in [1–

3] has very many desirable formal features, in its original incarnation one appears to be

forced to accept a non-zero cosmological constant of the wrong sign to be compatible with

observation [12, 19]. Additionally, one is forced to accept intrinsic parity violation in the

purely gravitational sector of the model [1, 5].

This naturally leads one to ask (and this is perhaps the key question from the quantum-

field-theorist’s point of view), just how important is “detailed balance”? Is it an essential

feature of the model, or is it just a simplifying assumption? Are there more general models

that let you tune the Newton constant and cosmological constant independently? Can ex-

plicit parity violation in the pure gravity sector be eliminated? Below, we shall provide more

details concerning a variant of Hořava’s model that is much better behaved in both these

regards [19], and which appears (at least superficially) to be phenomenologically viable.

Hořava has also introduced an explicit constraint which he calls the “projectability

condition” [1–3]. From a general relativists’ point of view, this is the condition that a certain

part of the space-time metric, the “lapse function”, can be set globally to unity. Although

at first glance this seems a significant constraint, the most important key solutions of the

vacuum and cosmological Einstein equations (the Schwarzschild, Reissner-Nordstrom, Kerr,

Kerr-Newman, Friedmann-Lemaitre-Robertson-Walker spacetimes) can all be put into this

form — at least for the physically interesting parts of those spacetimes [19, 37, 38]. The key

question (now from the point of view of a general relativist) is this: Is this “projectability

condition” an essential feature of the model, or is it just a simplifying assumption?

A further issue is that Hořava’s toy model contains a spin-0 scalar graviton in addition

to the standard spin-2 tensor graviton [1–3]. Phenomenologically, this is potentially risky,

and might, for instance, run into constraints from the gravity-wave-dominated evolution

of binary pulsar systems. Should that scalar mode be tuned to zero? Is there any sym-

metry that would protect this? (See for instance the discussion in [23], or more general

comments within an “emergent gravity” framework [39, 40].) Moreover, the toy model

is purely gravitational, and it will need to be investigated carefully just how to embed

matter (and eventually the standard model of particle physics) within it [6, 7, 20]. Be-

cause the gravitational field is still completely geometrical, albeit with a preferred frame,

it might be that there is no intrinsic difficulty in maintaining a universal coupling to the

gravitational field. Would there be non-zero signals in Eötvös-type experiments? Apart

from these questions, the community has already begun to look at such things as the

possible generation of chiral gravitational waves [5], possible impacts on cosmological so-

lutions and perturbations [6, 7, 9, 10, 16, 17, 21, 28, 36], possible modifications of black

hole physics [8, 12–14, 22, 27, 29, 31, 32, 35, 41], the question of “absolute time” [11],

“emergent gravity” [4, 15, 19], renormalizability [1–4, 24], holography [26], and more. . .
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Following up on the brief sketch presented in [19], we discuss in more detail some of the

phenomenological implications of our extension of Hořava’s model. In contrast to Hořava’s

original model, we abandon “detailed balance” and restore parity invariance. We retain,

however, Hořava’s “projectability condition”. Under these conditions we explicitly exhibit

all nine spatial-curvature terms that contribute to the Lagrangian. As determined by

power-counting, five of these operators are marginal (renormalizable) and four are relevant

(super-renormalizable). The classical limit of this extended model is phenomenologically

much better behaved than Hořava’s original model, as the Newton constant and cosmolog-

ical constant can be independently adjusted to conform to observation. Once the Planck

scale and cosmological constant have been factored out, the model is described by eight

independent dimensionless couplings, one of which is associated with the kinetic energy

(and leads to a scalar graviton mode), while the other seven are related to the breaking

of Lorentz invariance. We demonstrate how the Lorentz-breaking scales are related to

the Planck scale, but need not be identical to the Planck scale, and sketch the first steps

towards a detailed confrontation between this quantum gravity model and phenomenology.

In particular we begin by extracting the full classical equations of motion in ADM form,

and after linearizing and gauge fixing, use them to analyze both spin-2 tensor and spin-0

scalar graviton propagators around flat Minkowski space, demonstrating that these two

propagators are sensitive to different subsets of the dimensionless coupling constants. This

analysis also yields the dispersion relations and polarization states of classical gravitational

radiation in the weak-field regime. Additionally, it provides useful insight in the relation

between the “projectability condition” and the presence or absence of the spin-0 scalar

graviton. We furthermore analyze the classical evolution of FLRW cosmologies in this

extended model, demonstrating that the modified Friedmann equations are sensitive to

yet a third subset of the dimensionless coupling constants, and that the higher-derivative

spatial curvature terms can be used to mimic both radiation fluid (“dark radiation”) and

dark stiff matter. Thus different parts of the “potential term” govern distinct aspects of

the phenomenology. We conclude with some observations concerning future prospects.

2 The framework: anisotropic scaling

2.1 Lapse, shift, and spatial metric

To explain (our variant of) Hořava’s approach [1–3], the basic idea [4, 19] is to write the

spacetime metric in ADM form

ds2 = −N2c2dt2 + gij(dxi − N idt)(dxj − N jdt), (2.1)

and then, (adopting κ as a placeholder symbol for some object with the dimensions of

momentum), postulate that the engineering dimensions of space and time are

[dx] = [κ]−1; [dt] = [κ]−z . (2.2)

In condensed-matter language, this is typically referred to as “anisotropic scaling”. In

particle-physics language, one is implicitly introducing a scale Z, with the physical dimen-

sions [Z] = [dx]z/[dt], and using the theorists’ prerogative to adopt units such that Z → 1.

– 3 –
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Ultimately we shall interpret this scale Z in terms of the Planck scale, and several closely

related Lorentz-symmetry breaking scales. If one prefers to characterize this scale in terms

of a momentum ζ, then we have Z = ζ−z+1 c, and we see that in order for dimensional

analysis to be useful one cannot simultaneously set both Z → 1 and c → 1. (Attempting

to set both Z → 1 and c → 1 forces both dx and dt to be dimensionless, which then

renders dimensional analysis utterly impotent, and destroys the ability to perform the de-

sired “power-counting” analysis.) Consequently in these “theoretician’s units” (Z → 1)

one must have [
N i

]
= [c] =

[dx]

[dt]
= [κ]z−1, (2.3)

and one is free to additionally choose

[gij ] = [N ] = [1]; [ds] = [κ]−1. (2.4)

To minimize further algebraic manipulations, it is convenient to take the volume element

to be

dVd+1 =
√

g N ddx dt; [dVd+1] = [κ]−d−z. (2.5)

Note the absence of any factor of c. (This is simply a matter of convenience.) The resulting

model will, by its very construction, violate Lorentz invariance; the payoff however is greatly

improved ultraviolet behaviour for the Feynman diagrams [1–4, 19, 24], coupled with a

well-behaved low-energy limit [1–4, 19].

In fact we shall argue that a suitable extension [19] of the specific model presented by

Hořava in [1] is (at least superficially) phenomenologically viable, and has a classical limit

that is amenable to analysis in an ADM-like manner. Thus this is one of very few quantum

gravity models that has any realistic hope of direct confrontation with experiment and

observation. (When beginning the confrontation with phenomenology we will find it useful

to go back to the more usual “physical units” (c → 1) in which Z → ζ−z+1.)

2.2 Extrinsic and intrinsic curvatures

Like the volume element, the extrinsic curvature is also most conveniently defined to not

include any explicit factor of c:

Kij =
1

2N
{−ġij + ∇iNj + ∇jNi} . (2.6)

Then
[
N i

]
= [dx]/[dt] = [κ]z−1, in agreement with the previous choices. Furthermore

[Kij ] =
[gij ]

[N ][dt]
= [κ]z . (2.7)

For the intrinsic curvature of the spatial slices we have

[gij] = [1];
[
Γi

jk

]
= [κ];

[
Ri

jkl

]
= [κ]2, (2.8)

the key point being
[
Rijkl

]
= [κ]2;

[
∇Rijkl

]
= [κ]3;

[
∇2Rijkl

]
= [κ]4. (2.9)

– 4 –
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3 Determining a suitable action functional

3.1 Kinetic term

Consider the quantity

T (K) = gK

{(
KijKij − K2

)
+ ξK2

}
. (3.1)

(The general relativity kinetic term corresponds to the limit ξ → 0.) Take the kinetic

action to be

SK =

∫
T (K)

√
g N ddx dt. (3.2)

Again, note absence of any factors of c. (This is again purely a matter of convenience to

keep the dimensional analysis simple.) Then

[SK ] = [gK ][κ]z−d. (3.3)

Since the kinetic action is (by definition) chosen to be dimensionless, we have

[gK ] = [κ](d−z). (3.4)

Note that the coupling constant gK is dimensionless exactly for

d = z, (3.5)

which is exactly the condition that was aimed for in [1]. In a simplified model based

on scalar field self interactions, this is exactly the condition for well-behaved ultraviolet

behaviour derived in [4], and also the result obtained in [19]. Once we have set d = z

to make gK dimensionless, then provided gK is positive one can without loss of generality

re-scale the time and/or space coordinates to set gK → 1. (A negative gK would ultimately

lead to a wrong sign for the Newton constant, and gK = 0 is a physically diseased theory

that has no kinetic energy terms.) Note that there is very little freedom in choosing the

kinetic term: T (K) will be a generic feature of any Hořava-like model.

3.2 Potential term

Now consider a “potential” term

SV = −
∫

V (g) dVd+1 = −
∫

V (g)
√

g N ddx dt, (3.6)

where V (g) is some scalar built out of the spatial metric and its spatial derivatives. Again,

note the absence of any factors of c. Then

[SV ] = [V (g)] [κ]−d−z , (3.7)

whence

[V (g)] → [κ]d+z . (3.8)

– 5 –
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But to keep the kinetic coupling gK dimensionless we needed z → d. Therefore

[V (g)] → [κ]2d. (3.9)

But V (g) must be built out of scalar invariants calculable in terms of the Riemann tensor

and its derivatives, which tells us it must be constructible from objects of the form
{

(Riemann)d, [(∇Riemann)]2 (Riemann)d−3, etc . . .
}

. (3.10)

In general, in d + 1 dimensions this is a long but finite list. All of these theories should be

well-behaved as quantum field theories [1, 4, 19]. In particular, since everything up to this

point is valid for d + 1 dimensions, these simple observations verify the main claims made

in [1] regarding 3+1 dimensions, and shows that certain key aspects of that article nicely

generalize to d + 1 dimensions.

3.3 Specializing to 3 + 1 dimensions

In the specific case d = 3 we have

[V (g)] → [κ]6, (3.11)

and so obtain the much shorter specific list:
{

(Riemann)3, [∇(Riemann)]2, (Riemann)∇2(Riemann),∇4(Riemann)
}

. (3.12)

But in 3 dimensions the Weyl tensor automatically vanishes, so we can always decompose

the Riemann tensor into the Ricci tensor, Ricci scalar, plus the metric. Thus we need only

consider the much simplified list:
{

(Ricci)3, [∇(Ricci)]2, (Ricci)∇2(Ricci),∇4(Ricci)
}

. (3.13)

We now consider a model containing all possible terms of this type, eliminating redundant

terms using:

• Integration by parts and discarding surface terms.

• Commutator identities.

• Bianchi identities.

• Special relations appropriate to 3 dimensions.

(Weyl vanishes; properties of Cotton tensor.)

To keep the calculation tractable, (especially when it comes to integration by parts), we

impose Hořava’s “projectability” condition on the lapse function [1, 19]. This effectively

is the demand that the lapse N(t) is a function of t only, not a function of position. (In

particular, by re-parameterizing the time variable, this means that without further loss of

generality one can set N → 1.) Besides simplifying the action, Hořava argues that enforcing

the projectability condition N = N(t) might have other merits [2]: Since in his model the

– 6 –
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action is invariant only under foliation-preserving diffeomorphisms (see also section 5.1.4),

it would not be possible to use gauge transformations in order to set N = 1 unless one had

already enforced N = N(t) at the outset. Taking also into account the special nature of

time in the theory, this could cause technical difficulties in quantization [1, 2].

It should be remarked that in standard general relativity this projectability condition

can always be enforced locally as a gauge choice. Furthermore for the most physically

interesting solutions of general relativity it seems that this can always be done globally.

For instance, for the Schwarzschild and Reissner-Nordstrom spacetimes this “projectabil-

ity” condition holds globally (for the physically interesting region) in Painlevé-Gullstrand

coordinates [19, 37], while in the Kerr and Kerr-Newman spacetimes this condition holds

globally (for the physically interesting r > 0 region) in Doran coordinates [19, 38]. “Pro-

jectability” is also automatic for FLRW cosmologies. Thus in this sense the “projectability

condition” does not seem to be a significant restriction on the physics.

However, here we wish to enforce projectability at the level of the action, and before

any functional variation, and there is a price to pay for this: Firstly, not all gauges will be

accessible to us at the level of the field equations, as will be discussed shortly. Secondly, as

variation and gauge fixing do not necessarily commute the model we are considering might

not be the most general model with all possible terms of dimension six. Nonetheless, one can

expect that such a model will not exhibit any qualitative phenomenological deviations from

the most general model, apart from those clearly related to the projectability condition,

which can be easily distinguished. Therefore, for the time being we shall take the purely

pragmatic approach of retaining projectability as a simplifying assumption unless and until

we are forced to abandon it. The use of this “projectability” condition is a matter of some

concern and delicacy, as will be discussed later on.

After a brief calculation, we find that under these conditions there are only five inde-

pendent terms of dimension [κ]6:

R3, R Ri
jR

j
i, Ri

jR
j
kR

k
i; R ∇2R, ∇iRjk ∇iRjk. (3.14)

These terms are all marginal (renormalizable) by power counting [1, 4, 19]. In Hořava’s

article [1] only a particular linear combination of these five terms is considered:

Ci
j Cj

i. (3.15)

The restriction to this (Cotton)2 term follows as a consequence of Hořava’s, (to our minds),

physically unnecessary “detailed balance” condition [1]. Furthermore, as we shall soon see,

this “detailed balance” restriction ultimately makes it difficult to set up a phenomenologi-

cally viable model based on Hořava’s specific proposal [19].

If we now additionally add all possible lower-dimension terms (relevant operators,

super-renormalizable by power-counting) we obtain four additional operators:

[κ]0 : 1; [κ]2 : R; [κ]4 : R2; RijRij. (3.16)

This now results in a potential V with nine terms and nine independent coupling constants.

In contrast, motivated by his “detailed balance” ansatz, Hořava [1] chooses a potential con-

taining six terms (one of which is trivial) with only three independent coupling constants,

– 7 –
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of the form

VHorava(g) = (g̃2 Cotton + g̃1 Einstein + g̃0 metric)2. (3.17)

Note in particular that Hořava’s approach includes the cross-term

(Cotton) × (Einstein) = (Cotton) × (Ricci). (3.18)

This is a [κ]5 term which explicitly violates parity [1, 5], (and is the only parity-violating

term in his model). Because we have abandoned “detailed balance” we do not need such

a term, and we find it convenient to suppress it. It is worthwhile to emphasise that when

trying to extend or modify Hořava’s original model, it is the potential term that has most

flexibility: the existence of some V (g) is generic to Hořava-like models, but the details may

vary from model to model. (For this reason many of the computations below are carried

out for generic V (g).)

3.4 Full classical action

Assembling all the pieces we now have

S =

∫
[T (K) − V (g)]

√
g N d3x dt, (3.19)

with

V (g) = g0 ζ6 + g1 ζ4 R + g2 ζ2 R2 + g3 ζ2 RijR
ij + g4 R3 + g5 R

(
RijR

ij
)

+ g6 Ri
jR

j
kR

k
i

+g7 R∇2R + g8 ∇iRjk ∇iRjk, (3.20)

where we have introduced suitable factors of ζ to ensure the couplings ga are all dimen-

sionless. Assuming g1 < 0, we can without loss of generality re-scale the time and space

coordinates to set both gK → 1 and g1 → −1. The Einstein-Hilbert (+ cosmological

constant) piece of the action is now (still in Z → 1 theoreticians’ units)

SEH =

∫ {
(KijKij − K2) + ζ4R − g0 ζ6

}√
g N d3x dt, (3.21)

and the “extra” Lorentz-violating terms are controlled by a total of eight dimensionless

coupling constants (ξ, g2, . . . , g8)

SLV =

∫ {
ξ K2 − g2 ζ2 R2 − g3 ζ2 RijR

ij − g4 R3 − g5 R
(
RijR

ij
)
− g6 Ri

jR
j
kR

k
i

−g7 R∇2R − g8 ∇iRjk ∇iRjk
}√

g N ddx dt. (3.22)

This is a perfectly reasonable classical Lorentz-violating theory of gravity, which we further-

more know has nice ultraviolet behaviour [1, 4, 19]. Even classically, this model certainly

deserves study in its own right.

– 8 –
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3.5 Zeroth-order phenomenology: recovering general relativity

While the Z → 1 “theoreticians” units considered above have been most useful for power

counting purposes, when it comes to phenomenological confrontation with observation it

is much more useful to adapt more standard “physical” units (c → 1), in which [dx] = [dt].

The transformation to physical units is most easily accomplished by setting (dt)Z=1 →
ζ−2(dt)c=1. In these units the Einstein-Hilbert (+ cosmological constant) piece of the

action becomes

SEH = ζ2

∫ {(
KijKij − K2

)
+ R − g0 ζ2

}√
g N d3x dt. (3.23)

(See for instance equation (21.86) of MTW [42] for a comparison with standard general

relativity.) From this normalization of the Einstein-Hilbert term, we see that in these

physical (c → 1) units

(16πGNewton)−1 = ζ2; Λ =
g0 ζ2

2
; (3.24)

so that ζ is identified as the Planck scale. The cosmological constant is determined by the

free parameter g0, and observationally g0 ∼ 10−123. In particular, the way we have set this

up we are free to choose the Newton constant and cosmological constant independently

(and so to be compatible with observation). In contrast, in the original model presented

in [1], a non-zero Newton constant requires a non-zero cosmological constant, of the wrong

sign to be compatible with cosmological observations [12, 19]. (In a more realistic model

including matter one would have to calculate the vacuum energy density and appropri-

ately renormalize the cosmological constant, it would then be better to say that the nett

renormalized value of g0 ∼ 10−123.)

3.6 First-order phenomenology: Lorentz symmetry breaking

In “physical” (c → 1) units, the “extra” Lorentz-violating terms become

SLV = ζ2

∫ {
ξ K2−g2 ζ−2 R2−g3 ζ−2 RijR

ij−g4 ζ−4 R3−g5 ζ−4 R
(
RijR

ij
)

−g6 ζ−4 Ri
jR

j
kR

k
i−g7 ζ−4 R∇2R−g8 ζ−4 ∇iRjk ∇iRjk

} √
g N ddx dt. (3.25)

The extra Lorentz violating terms consist of one kinetic term, and seven higher-spatial-

curvature terms. The Lorentz violating term in the kinetic energy leads to an extra scalar

mode for the graviton [1], with fractional O(ξ) effects at all momenta. (See further dis-

cussion below.) Phenomenologically, this behaviour is potentially dangerous and should

be carefully investigated. In contrast the various Lorentz-violating terms in the potential

become comparable to the spatial curvature term in the Einstein-Hilbert action only for

physical momenta of order

ζ{2,3} =
ζ√∣∣g{2,3}

∣∣
, ζ{4,5,6,7,8} =

ζ

4

√∣∣g{4,5,6,7,8}

∣∣
, (3.26)

or higher. Thus the higher-curvature terms are automatically suppressed as we go to low

curvature (low momentum).

– 9 –
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Note that in this analysis we have now divorced the Planck scale ζ from the various

Lorentz-breaking scales ζ{2,3,4,5,6,7,8}, and that we can drive the Lorentz breaking scale ar-

bitrarily high by suitable adjustment of the dimensionless couplings g{2,3} and g{4,5,6,7,8}.

It is these pleasant properties that make the model phenomenologically viable — at least

at a superficial level — and that encourage us to consider more detailed confrontation with

experiment and observation. Since the ultraviolet dominant part of the Lorentz breaking

is sixth order in momenta, it neatly evades all current bounds on Lorentz symmetry break-

ing [43–45]. At most one might hope to get some observational constraints on g2 and/or

g3, (which lead to deviations from Lorentz invariance at fourth order in spatial momenta),

but even those bounds would be rather weak.

4 Classical equations of motion

4.1 Hamiltonian constraint

Varying with respect to the lapse N(t) one obtains the Hamiltionian constraint

H =

∫ √
g H (K, g) d3x =

∫ √
g {T (K) + V (g)}d3x = 0. (4.1)

The difference here compared to standard general relativity lies in:

1. The ξ term in the kinetic energy.

2. The more complicated form of the potential V (g).

3. Finally, because of the assumed “projectability” condition on the lapse N(t) one

cannot derive a super-Hamiltonian constraint, and must remain satisfied with this

spatially integrated Hamiltonian constraint.

We emphasise that this Hamiltonian constraint will be generic to all Hořava-like models

as it really only depends on the “projectability” condition and is completely independent

of the precise form of the potential V (g). Furthermore, if (and only if) one relaxes the

“projectability” condition and permits the lapse N(t, x) to be an arbitrary function of

space+time, would one then obtain a super-Hamiltonian constraint

H (K, g) ≡ T (K) + V (g) = 0. (4.2)

4.2 Super-momentum constraint

Varying with respect to the shift N i one obtains the super-momentum constraint

∇iπ
ij = 0, (4.3)

where the super-momentum is

πij =
∂ [NT (K)]

∂ġij

= −
{
Kij − Kgij + ξKgij

}
. (4.4)
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The difference here compared to standard general relativity is utterly minimal and lies

solely in the ξ term. (See for instance equation (21.91) of MTW [42] for a comparison with

standard general relativity.) We emphasise that this super-momentum constraint will be

generic to all Hořava-like models as it only depends on the form of the kinetic term T (K)

and is completely independent of the precise form of the potential V (g).

4.3 Dynamical equation

By varying with respect to gij one now obtains

1√
g

∂t

(√
g πij

)
= −2N

{(
K2

)ij − KKij + ξKKij
}

+
N

2
T (K) gij + (∇mNm) πij

+
[
L ~N

π
]ij

+
N√
g

δSV

δgij

. (4.5)

This is very similar to standard general relativity (see for instance equation (21.115) of

MTW [42] for a comparison):

• There is a straightforward extra contribution coming from the ξ term in the kinetic

energy.

• The only real subtlety lies in evaluating the δSV /δgij terms.

• We emphasise that most of the features of this dynamical equation will be generic

to all Hořava-like models. The specific model dependence is confined to the

δSV /δgij term.

• In contrast to standard general relativity there are no terms depending on the spatial

gradients of the lapse function — this is a side effect of the “projectability” condition.

As usual (K2)ij = Kim gmn Knj = Kik Kk
j . Evaluating the δSV /δgij term for our specific

variant of Hořava’s model is somewhat tedious, but since in our model we know that SV

is the most general action one can build out of the metric using 0, 2, 4, or 6 derivatives we

can (without calculation) deduce that the “forcing term”

F ij =
1√
g

δSV

δgij
. (4.6)

is the most general symmetric conserved tensor one can build out of the metric and 0, 2,

4, or 6 derivatives. Writing

F ij =

8∑

s=0

gs ζns (Fs)
ij , (4.7)

where ns is an appropriate integer to get the dimensions correct, an explicit calculation

identifies the following nine individual terms contributing to the overall forcing term:

• g0 : 1 →
(F0)ij = −1

2
gij . (4.8)
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• g1 : R →
(F1)ij = Gij . (4.9)

• g2 : R2 →
(F2)ij = 2RRij −

1

2
R2gij − 2[∇i∇j − gij∇2]R. (4.10)

• g3 : RmnRmn →

(F3)ij =
3

2
(RmnRmn)gij + ∇2Rij +

1

2
gij∇2R −∇i∇jR + 3RRij − 4(R2)ij − R2gij .

(4.11)

• g4 : R3 →
(F4)ij = 3R2Rij −

1

2
R3gij − 3[∇i∇j − gij∇2]R2. (4.12)

• g5 : R (RmnRmn) →

(F5)ij = Rij(RmnRmn) + 2R(R2)ij −
1

2
R (RmnRmn)gij (4.13)

+
[
∇2(RRij) + ∇m∇n(RRmn)gij −∇k∇i(RRjk) −∇k∇j(RRki)

]

+
[
gij∇2 + ∇i∇j

]
(RmnRmn).

• g6 : Rm
nRn

pR
p
m →

(F6)ij = 3(R3)ij −
1

2
(Rk

mRm
nRn

k)gij (4.14)

+
3

2

[
∇2(R2)ij + ∇n∇m(R2)nmgij −∇n∇i(R

2)jn −∇n∇j(R
2)in

]
.

• g7 : (∇R)2 = (∇mR)gmn(∇nR) →

(F7)ij = −2[gij∇2 −∇i∇j ]∇2R − 2(∇2R)Rij + (∇iR) (∇jR) − 1

2
(∇R)2gij . (4.15)

• g8 : (∇pRmn)(∇pRmn) →

(F8)ij = ∇4Rij +
(
∇p∇q∇2Rpq

)
gij −∇p∇i∇2Rp

j −∇p∇j∇2Rp
i (4.16)

− (∇iR
m

n) (∇jR
n

m) − 1

2
(∇pRmn) (∇pRmn) gij − 2 (∇qRi

p) (∇qRjp) .

As usual we adopt the notation
(
R2

)ij
= Rik Rk

j , and similarly
(
R3

)ij
= Rik Rk

l Rl
k.

Furthermore (∇R)2 = (∇iR) (∇iR). The first two terms above, (F0)ij and (F1)ij, are

exactly what one would expect for the 3+1 decomposition of standard Einstein gravity

with a cosmological constant. The remaining seven forcing terms characterize violations

of Lorentz invariance and from a QFT perspective are utterly essential for regulating the

high-energy behaviour of the Feynman diagrams [1, 4, 19]. From a classical perspective,

these are just higher-(spatial)-curvature terms which are suppressed at low curvature by

suitable powers of the relevant Lorentz-breaking scales ζ{2,3,4,5,6,7,8}. The relevance of these

observations is that the classical limit has now been cast into an ADM-like form, suitable,

for instance, for detailed numerical investigations (and other purposes).
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5 Scalar and tensor graviton propagators around Minkowski space

5.1 Linearizing the equations of motion

To extract the graviton propagator we will linearize the equations of motion derived above.

In the classical limit, this calculation will also yield the dispersion relations and polariza-

tion states for classical weak-field gravitational radiation. For simplicity we will set the

cosmological constant g0 = 0 for this calculation and use flat spacetime as a background

solution. We then have

0gij = δij ;
0Ni = 0; 0N = 1. (5.1)

Now consider linearized perturbations

gij = δij + ǫ hij; Ni = ǫ ni; N = 1 + ǫ n(t), (5.2)

then

gij = δij − ǫ hij + O
(
ǫ2

)
; N i = ǫ ni + O

(
ǫ2

)
; N = 1 + ǫ n(t). (5.3)

Now expand the extrinsic curvature Kij , the conjugate momentum πij , the intrinsic Ricci

curvature Rij and forcing term Fij as a series in ǫ of the form

X = 0X + ǫ 1X + O
(
ǫ2

)
(5.4)

In fact Kij, πij, Rij , and Fij all vanish at zeroth order and the first non-trivial contribution

arises at order ǫ.

5.1.1 Hamiltonian constraint

Since Kij = O(ǫ), it follows that T (K) = O(ǫ2). Furthermore, explicit inspection of the

potential shows that there is only one non-trivial term

V (g) = ǫ g1 (1R) + O
(
ǫ2

)
. (5.5)

So the linearized Hamiltonian constraint is

1H ≡ g1

∫
1R d3x = 0. (5.6)

This is a rather weak constraint on the integrated Ricci scalar. Note however, that if we

were to abandon projectability then in the current situation we would have the much more

restrictive constraint that

1R = 0. (5.7)

We shall have more to say on this point later on in the analysis.
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5.1.2 Supermomentum constraint

Starting from the extrinsic curvature

Kij = −ǫ
1

2

{
ḣij − ∂inj − ∂jni

}
+ O

(
ǫ2

)
, (5.8)

one calculates the conjugate momentum

πij = ǫ
1

2

{
ḣij − ∂inj − ∂jni − (1 − ξ)δij

{
ḣ − 2~∂ · ~n

}}
+ O

(
ǫ2

)
. (5.9)

Then the supermomentum constraint becomes

ǫ
1

2
∂i

{
ḣij − ∂inj − ∂jni − (1 − ξ)δij

{
ḣ − 2~∂ · ~n

}}
+ O

(
ǫ2

)
= 0. (5.10)

That is, dropping irrelevant prefactors,

∂i
{

ḣij − ∂inj − ∂jni − (1 − ξ)δij

{
ḣ − 2~∂ · ~n

}}
= 0. (5.11)

It is convenient to rearrange this as

∂i
{

ḣij − (1 − ξ)δij ḣ
}

= ∂2nj − (1 − 2ξ)∂j(~∂ · ~n). (5.12)

We will soon use an appropriate gauge-fixing to eliminate the r.h.s. , but choose to defer

that step for now. Here and below we shall use ∂2 as a convenient shorthand for the

flat-space Laplacian ∂i∂
i.

5.1.3 Dynamical equation

We now linearize the dynamical equation. On the l.h.s.

1√
g

∂t

(√
g πij

)
= ǫ

1

2
∂t

{
ḣij − ∂inj − ∂jni − (1 − ξ)δij

{
ḣ − 2~∂ · ~n

}}
+ O

(
ǫ2

)
. (5.13)

In counterpoint, on the r.h.s. the only non-trivial contribution comes from linearizing the

forcing term 1F ij , all other contributions are O(ǫ2). Consequently

1

2
∂t

{
ḣij − ∂inj − ∂jni − (1 − ξ) δij

{
ḣ − 2~∂ · ~n

}}
= 1Fij , (5.14)

which it is convenient to rewrite as

1

2

{
ḧij − (1 − ξ)δij ḧ

}
=

1

2

{
∂iṅj + ∂j ṅi − 2(1 − ξ)δij

(
~∂ · ~̇n

)}
+ 1Fij . (5.15)

Before presenting the linearization of the forcing term to explicitly obtain 1F ij it is conve-

nient to first discuss gauge fixing.
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5.1.4 Gauge fixing

The projectability condition that we have enforced at the level of the action, i.e. the

requirement N = N(t), is only part of the gauge freedom usually exploited at the level

of the field equations. The theory under consideration is still invariant under coordinate

transformations that preserve the preferred foliation:

t → t + ǫχ0(t) + . . . ; xi → xi + ǫχi(t, x) + . . . . (5.16)

(Note that χ0(t) depends only on time, not space). Then as per the usual (and quite

standard) analysis, when working around a flat background

gab → gab + ǫ [∂aχb + ∂bχa] + O(ǫ2). (5.17)

Extracting the coordinate-transformation-induced changes for the lapse, shift, and 3-metric

(around a flat background)

N(t) → N(t) − ǫ χ̇0(t) + . . . ; (5.18)

Ni → Ni + ǫ χ̇i(t, x) + . . . ; (5.19)

gij → gij + ǫ [∂iχj(t, x) + ∂jχi(t, x)] + . . . (5.20)

and so for the linearized perturbations

n → n − χ̇0(t);

ni → ni + χ̇i(t, x);

hij → hij + {∂iχj(t, x) + ∂jχi(t, x)};
h → h + 2 ∂iχ

i(t, x).

The so-called synchronous gauge consists of choosing χ0(t) so that n(t) → 0, and simulta-

neously choosing χi(t, x) so that ni → 0. In this synchronous gauge:

• From the supermomentum constraint:

∂i
{

ḣij − (1 − ξ)δij ḣ
}

= 0. (5.21)

• From the dynamical equation:

1

2

{
ḧij − (1 − ξ)δij ḧ

}
= 1Fij . (5.22)

But even after this synchronous gauge has been adopted there is still a residual

gauge freedom

n ≡ 0; ni ≡ 0; (5.23)

hij → hij + ∂iχ̄j(x) + ∂jχ̄i(x); (5.24)

h → h + 2 ∂iχ̄
i(x), (5.25)

where χ̄i(x) is time-independent. This residual gauge freedom is essential to Hořava’s

prescription for separating the perturbation hij onto scalar and tensor modes [1].
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5.1.5 Scalar-tensor decomposition

One can re-write the supermomentum constraint as

∂t

[
∂i {hij − (1 − ξ)δijh}

]
= 0, (5.26)

implying

∂i {hij − (1 − ξ)δijh} = Kj(x), (5.27)

where Kj(x) is some arbitrary time-independent vector field. Using the residual time-

independent coordinate transformations χ̄i(x) we can transform

Ki → Ki + ∂2χ̄i − (1 − 2ξ)∂i(∂j χ̄
j) ,

~∂ · ~K → ~∂ · ~K + 2ξ∂2(~∂ · ~̄χ), (5.28)

and suitably choosing χ̄i(x) these residual gauge transformations can be used to set

Ki(x) → 0 as long as ξ 6= 0 (and this is effectively what Hořava does [1]). Note that

even after setting Ki(x) → 0 we are still left with some limited gauge freedom

χ̄i(x) = ∂iΨ̄(x), (5.29)

subject to the condition

∂i∂
2Ψ̄(x) = 0, (5.30)

as such transformations leave Ki unchanged. Under this last remaining coordinate freedom

hij → hij + 2∂i∂jΨ̄(x);

h → h + 2 ∂2Ψ̄(x). (5.31)

Unfortunately the exceptional case ξ = 0 is of most direct relevance to standard gen-

eral relativity, but let us put that technical issue aside for now. (We will return to this

point below.) If we adopt Hořava’s gauge fixing then the super-momentum constraint can

effectively be time-integrated to yield

∂i {hij − (1 − ξ)δijh} = 0, (5.32)

and the only remaining dynamical equation is

1

2

{
ḧij − (1 − ξ)δij ḧ

}
= 1Fij . (5.33)

Taking the trace

−
(

1 − 3

2
ξ

)
ḧ = 1F. (5.34)

This is the linearized equation of motion for the spin-zero scalar graviton. The potential

V (g), and consequently the forcing term 1F , is at this stage generic. (An explicit compu-

tation for our particular model will follow shortly.) To extract the spin-two tensor graviton

Hořava then defines (the equivalent of)

Hij = hij − (1 − ξ)δijh; hij = Hij −
(1 − ξ)

(2 − 3ξ)
δijH; H = −(2 − 3ξ)h, (5.35)

– 16 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
3

where Hij is transverse, and furthermore separates out the transverse traceless piece

Hij = H̃ij +
1

2

(
δij −

∂i∂j

∂2

)
H, (5.36)

implicitly defining H̃ij . Therefore

hij = H̃ij +
1

2

(
δij −

∂i∂j

∂2

)
H − (1 − ξ)

(2 − 3ξ)
δijH, (5.37)

or

hij = H̃ij −
(2 − 3ξ)

2

(
δij −

∂i∂j

∂2

)
h + (1 − ξ)δijh. (5.38)

So the dynamical equation (5.33) takes the form

¨̃
H ij = 2 1Fij −

1

2

(
δij −

∂i∂j

∂2

)
Ḧ = 2 1Fij +

(2 − 3ξ)

2

(
δij −

∂i∂j

∂2

)
ḧ. (5.39)

But in view of the dispersion relation for h already derived in equation (5.34), this can

easily be rewritten as
¨̃
H ij = 2 1Fij −

(
δij −

∂i∂j

∂2

)
1F, (5.40)

so
¨̃
H ij = 2

(
1Fij −

1

2
δij

1F

)
+

∂i∂j

∂2

[
1F

]
. (5.41)

This is the linearized equation of motion for the spin-two tensor graviton. The potential

V (g), and consequently the forcing term 1Fij , is at this stage generic. (An explicit com-

putation for our particular model will follow shortly.) It is easy to check that the r.h.s. of

the above is both transverse and traceless, as is required for consistency. The analysis of

this section has now decomposed the metric perturbation hij onto a spin-0 scalar, h, and

a spin-2 tensor H̃ij, with appropriate equations of motion for each. The only remaining

task is to calculate the linearized quantities 1Fij and 1F for our particular model, using

the gauge-fixing to simplify terms as much as possible.

5.1.6 The exceptional ξ = 0 case

In the exceptional case ξ = 0 the supermomentum constraint after going to synchronous

gauge (and before any residual gauge fixing) is

∂t

[
∂i {hij − δijh}

]
= 0, (5.42)

implying

∂i {hij − δijh} = Kj(x), (5.43)

where again Kj(x) is some arbitrary time-independent vector field. Using the residual

time-independent coordinate transformations χ̄i(x) we can transform

Ki → Ki + ∂2χ̄i − ∂i

(
∂jχ̄

j
)
, (5.44)
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implying

K[i,j] → K[i,j] + ∂2χ̄[i,j]; ~∂ · ~K → ~∂ · ~K. (5.45)

So in this exceptional case we cannot eliminate Ki completely, though we can eliminate

K[i,j]. (To do this choose ∂2χ̄i to be any of the “vector potentials” leading to the “magnetic

field” −K[i,j]. This will specify χ̄i(x) up to a gauge transformation ∂iΨ̄(x).) Thus, after

this next step of gauge fixing, there is some time independent scalar Φ(x) such that Ki(x) =

∂iΦ(x) and so the (time-integrated) supermomentum constraint becomes

∂i {hij − δij(h + Φ)} = 0, (5.46)

and we still have available two residual gauge transformations coming from the

quantity Ψ̄(x):

hij → hij − 2∂i∂jΨ̄(x); h → h − 2 ∂2Ψ̄(x). (5.47)

The dynamical equation is now

1

2

{
ḧij − δij ḧ

}
= 1Fij . (5.48)

Taking the trace

− ḧ = 1F. (5.49)

To obtain the transverse-traceless mode suitable for this situation we first define

Hij = hij − δij(h + Φ); hij = Hij −
H + Φ

2
δij ; H = −2h − 3Φ, (5.50)

where Hij is transverse, and again separate out the transverse traceless piece

Hij = H̃ij +
1

2

(
δij −

∂i∂j

∂2

)
H, (5.51)

implicitly defining H̃ij . Therefore

hij = H̃ij +
1

2

(
δij −

∂i∂j

∂2

)
H − H + Φ

2
δij , (5.52)

or

hij = H̃ij −
1

2

(
δij −

∂i∂j

∂2

)
(2h + 3Φ) + δij(h + Φ). (5.53)

So (remembering that Φ(x) is time independent) the dynamical equation (5.48) now takes

the same form as for ξ 6= 0.

¨̃
H ij = 2 1Fij −

1

2

(
δij −

∂i∂j

∂2

)
Ḧ = 2 1Fij +

(
δij −

∂i∂j

∂2

)
ḧ. (5.54)

But in view of the dispersion relation for h already derived in equation (5.49), this can

easily be rewritten as

¨̃
H ij = 2 1Fij −

(
δij −

∂i∂j

∂2

)
1F =

¨̃
Hij = 2

(
1Fij −

1

2
δij

1F

)
+

∂i∂j

∂2

[
1F

]
. (5.55)

So despite extra technical complications for ξ = 0, the ultimate set of differential equations

looks very similar — though we shall still see some subtleties arise after explicit linearization

of the forcing term.
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5.2 Linearizing the forcing term

We can now return to the linearization of the forcing term Fij → 1Fij . Using the general

form for the forcing term without yet imposing any gauge conditions and specializing to a

Minkowski background

1(F1)ij = 1Rij −
1

2
(1R)δij ; (5.56)

1(F2)ij = −2
[
∂i∂j − δij∂

2
]
(1R); (5.57)

1(F3)ij = ∂2
(
1Rij

)
+

1

2
δij∂

2
(
1R

)
− ∂i∂j(

1R); (5.58)

1(F4)ij = 0; (5.59)
1(F5)ij = 0; (5.60)
1(F6)ij = 0; (5.61)
1(F7)ij = 2

[
∂i∂j − δij∂

2
]
∂2(1R); (5.62)

1(F8)ij = ∂4
(
1Rij

)
− ∂2

[
∂i∂j −

1

2
δij∂

2

]
(1R). (5.63)

Similarly for the trace

1(F1) = −1

2

(
1R

)
; (5.64)

1(F2) = 4∂2
(
1R

)
; (5.65)

1(F3) =
3

2
∂2

(
1R

)
; (5.66)

1(F4) = 0; (5.67)
1(F5) = 0; (5.68)
1(F6) = 0; (5.69)
1(F7) = −4∂4

(
1R

)
; (5.70)

1(F8) =
3

2
∂4

(
1R

)
. (5.71)

But calculating 1Rij and 1R is simple. Before any gauge fixing

1Rij = −1

2

(
∂2hij + ∂i∂jh − hmi,mj − hmj,mi

)
,

1R = −
(
∂2h − hmn,mn

)
. (5.72)

Applying Hořava’s gauge condition (ξ 6= 0, plus synchronous gauge, plus in addition the

residual gauge fixing),

1Rij → −1

2
(∂2hij − ∂i∂jh) − ξ(∂i∂jh) = −1

2

[
∂2H̃ij +

ξ

2
(δij∂

2 + ∂i∂j)h

]
;

1R → −ξ∂2h. (5.73)
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This allows us to assert

1(F1)ij = −1

2
∂2H̃ij + ξ (derivative terms acting on) h; (5.74)

1(F2)ij = ξ (derivative terms acting on) h; (5.75)

1(F3)ij = −1

4
∂4H̃ij + ξ (derivative terms acting on) h; (5.76)

1(F4)ij = 0; (5.77)
1(F5)ij = 0; (5.78)
1(F6)ij = 0; (5.79)
1(F7)ij = ξ (derivative terms acting on) h; (5.80)

1(F8)ij = −1

2
∂6H̃ij + ξ (derivative terms acting on) h; (5.81)

For the trace we have

1(F1) =
1

2
ξ∂2h; (5.82)

1(F2) = −4ξ∂4h; (5.83)

1(F3) = −3

2
ξ∂4h; (5.84)

1(F4) = 0; (5.85)
1(F5) = 0; (5.86)
1(F6) = 0; (5.87)
1(F7) = 4ξ∂6h; (5.88)

1(F8) = −3

2
ξ∂6h; (5.89)

In contrast, in the exceptional situation ξ = 0 we obtain

1Rij → −1

2

(
∂2hij − ∂i∂jh

)
+ ∂i∂jΦ(x) = −1

2

[
∂2H̃ij −

1

2

(
δij∂

2 + ∂i∂j

)
Φ(x)

]
;

1R → ∂2Φ(x). (5.90)

Note in particular that in the ξ = 0 case we see that 1R is “frozen in”; because of the

interplay between supermomentum constraints and gauge fixing all the time-dependence

in 1R has been eliminated.

5.3 Spin-0 scalar graviton

It is most efficient to separate the discussion of the scalar graviton into three separate cases.

5.3.1 General kinetic term (ξ 6= 0):

Collecting terms from the above, for the spin-0 scalar graviton, when ξ 6= 0 the linearized

equation of motion is simply
(

1 − 3

2
ξ

)
ḧ = −ξ

{
1

2
g1∂

2 +

(
−4g2 −

3

2
g3

)
ζ−2∂4 +

(
4g7 −

3

2
g8

)
ζ−4∂6

}
h . (5.91)
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This is a sixth-order trans-Bogoliubov dispersion relation [4] for the scalar mode h. Note

that only some of the potential couplings contribute here, (g1, g2, g3, g7, g8), and it is a

different set of couplings from what we shall soon see is relevant for the tensor graviton

(g1, g3, g8), or is relevant for FLRW cosmology (g0—g6). Combining the Hamiltonian

constraint in equation (5.6) with equation (5.73) we can at least deduce that

∫
∂2h(t, x) d3x = 0. (5.92)

In combination with the equation of motion for the spin-0 excitation, see equation (5.91),

this implies

∂2
t

∫
h d3x = 0. (5.93)

But then
∫

h d3x is linear in time:

∫
h(t, x) d3x =

∫
h(0, x) d3x + t

∫
ḣ(0, x) d3x. (5.94)

If we now use the very last bit of coordinate freedom, (the function Ψ̄(x)), we can only set∫
h(0, x) d3x → 0, but we cannot choose to fix

∫
ḣ(0, x) d3x. So the total volume cannot

be fixed: ∫
h(t, x) d3x → t

∫
ḣ(0, x) d3x. (5.95)

Thus h is given by the solution of equation (5.91) subject to the constraint equation (5.95).

5.3.2 Specific general relativistic kinetic term (ξ = 0):

For ξ = 0 we need a separate special-case analysis. In view of our computations above, one

merely has to make the formal replacements ξh → −Φ(x) followed by ξ → 0 to obtain

ḧ =

{
1

2
g1∂

2 +

(
−4g2 −

3

2
g3

)
ζ−2∂4 +

(
4g7 −

3

2
g8

)
ζ−4∂6

}
Φ(x). (5.96)

Note that this is not a “wave equation”. The quantity Φ(x) is by construction time-

independent, so this says that at each spatial point x the scalar mode h(t, x) is undergoing

“constant acceleration”. Indeed equation (5.96) can readily be solved to give

h(t, x) = h(0, x) + ḣ(0, x) t +
1

2
ḧ(0, x)t2. (5.97)

According to equation (5.47), we still have just enough remaining gauge freedom to set

h(0, x) → 0 and get

h(t, x) = ḣ(0, x) t +
1

2
ḧ(0, x)t2 (5.98)

(the function Ψ̄(x) can now be chosen arbitrarily). Note that ḧ(0, x) is just the right hand

side of equation (5.96). Using the linearized Hamiltonian constraint in equation (5.6) as

above now gives ∫
∂2Φ(x) d3x = 0, (5.99)
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and so ∫
ḧ(t, x) d3x =

∫
ḧ(0, x) d3x = 0, (5.100)

which is the only constraint on the functional form of ḧ(0, x). Again, the total volume of

space is not fixed.

5.3.3 Non-projectable case:

Let us briefly examine now what would happen if we would decide to relax the projectability

condition. In this case the Hamiltonian constraint would become a super-Hamiltonian

constraint 1R = 0, which would imply, for the ξ 6= 0 case ∂2h(t, x) = 0, and for the ξ = 0

case ∂2Φ(x) = 0.

• For ξ 6= 0 the constraint ∂2h = 0, together with a boundedness condition on h(t, x)

and suitable fall-off conditions at spatial infinity, then implies

h(t, x) = 0, (5.101)

so in this particular case the linearized scalar mode can be eliminated.1

• In contrast, for ξ = 0 the equation of motion collapses to ḧ = 0 for all x, and so

h(t, x) = h(0, x) + ḣ(0, x) t. (5.102)

So in the ξ = 0 non-projectable case there is not enough residual gauge freedom to

set h to zero. We appear to be left with an undesirable linear expansion mode.

Overall, the behaviour of the spin-zero mode is certainly disturbing and definitely deserves

fuller investigation. (Note in particular that in a different context the authors of refer-

ence [23] have also encountered difficulties with the spin-zero mode).2

5.4 Spin-2 tensor graviton

Extracting the equation for the spin-2 tensor graviton requires a little more work. From

the results assembled for 1Fij above, we can assert

¨̃
H ij = −

[
g1∂

2 + g3ζ
−2∂4 + g8ζ

−4∂6
]
H̃ij + ξXij . (5.103)

Here Xij is a tensor that is linear in the scalar h, independent of ξ, and whose tensor

structure arises solely from partial derivatives and the Kronecker delta. Furthermore by

construction Xij is both transverse and traceless. This tells us

Xij = {a
(
∂2n

)
∂2δij + b

(
∂2n

)
∂i∂j}h. (5.104)

1A similar result has subsequently been derived in a cosmological setting in reference [55].
2The fact that for ξ 6= 0 the scalar mode can be eliminated at the level of linear perturbations does not

necessarily mean it is absent altogether. Subsequent to the original appearance of this article, several papers

have discussed this issue — as well as further difficulties that arise beyond the linearized level [56–58]. Note

also that the linear expansion mode found for the ξ = 0 non-projectable case need not be physical. Indeed,

it was again subsequently shown in [59] that it is essentially a gauge artifact.
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But tracelessness implies 3a + b = 0 while transversality implies a + b = 0. Therefore

a = b = 0 and the tensor Xij = 0. So the spin-2 tensor graviton satisfies

¨̃
H ij = −

[
g1∂

2 + g3ζ
−2∂4 + g8ζ

−4∂6
]
H̃ij. (5.105)

This is again a sixth-order trans-Bogoliubov dispersion relation [4], now sensitive to a

different combination of the coupling constants. This dispersion relation does not depend

on ξ, and careful analysis of the special case ξ = 0 shows this equation for the tensor mode

continues to hold even for that otherwise exceptional case.

5.5 Low-momentum and high-momentum limits

In the low-momentum limit the spin-2 graviton is naively seen to have both phase velocity

and group velocity c2
spin 2 → −g1. But we had already noted that in going to physical

normalization for the Einstein-Hilbert term we need to scale space and time so that gK →
+1 and g1 → −1. So, as expected, the physical phase and group velocities of the low-

momentim spin 2 graviton are simply c2
spin 2 → 1. (This is very strongly reminiscent of

the way in which the Bogoliubov dispersion relation leads in the low-momentum limit to

a phononic branch with finite speed of sound. See, for example, [37, 46].) In short, the

behaviour of the tensor mode is physically reasonable.

In contrast, the low-momentum phase velocity (and group velocity) of the spin-0 gravi-

ton is seen to be

c2
spin 0 = − ξ g1

2 − 3ξ
→ ξ

2 − 3ξ
. (5.106)

So at low momentum this spin-0 mode is propagating (hyperbolic) for ξ ∈ (0, 2/3), but is

non-propagating (elliptic) for ξ < 0 and ξ > 2/3. Elliptic modes are potentially dangerous

in that they correspond to imaginary frequencies and can lead to exponential instabilities,

(see for instance [47, 48]). Note that whether this mode is propagating (hyperbolic) or

non-propagating (elliptic) can now depend on the momentum. For examples of similar

phenomena in the “analogue spacetime” framework, see [47, 48]. The situation is actually

worse than this: In Hořava’s parameterization

ξ

2 − 3ξ
= − 1 − λ

1 − 3λ
, (5.107)

so a propagating scalar mode corresponds to a negative kinetic energy ghost mode. (See

especially (4.56) of [2].) Since the presence of a scalar ghost depends only on the kinetic

term T (K), this feature is likely to be generic to all Hořava-like models. (In fact, if one

takes seriously the supposed renormalization group running of Hořava’s original gravity

model [1] from a λ = 1/3 [ξ = 2/3] conformal coupling in the ultraviolet to a λ = 1 [ξ = 0]

Einstein-Hilbert coupling in the infrared, then this evolution has to take one through the

parameter region where the scalar mode kinetic energy is negative.) These observations

again strongly suggest that it is desirable to eliminate the scalar mode if at all possible.

Turning to high momentum, the dispersion relation in that regime can be either sub-

linear or super-linear depending on the signs of the appropriate couplings — in the “ana-

logue spacetime” framework [37] such dispersion relations are referred to as “subluminal”
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or “superluminal” respectively. (In that framework such modified dispersion relations are

typically used as ways of probing the physics of Hawking radiation or cosmological particle

production [49–51], but in the present context the (momentum)4 and (momentum)6 terms

are to be viewed as fundamental physics.)

6 Application to FLRW cosmology

In a cosmological setting the forcing terms Fij simplify tremendously, and provide one with

a simple modification of standard FLRW cosmology. (As we shall soon see, the Friedmann

equations pick up a few extra terms from the higher-derivative spatial curvature terms in

V (g), and the kinetic part of the Friedmann equations is slightly modified by the ξ term

in T (K).) The 3+1 line element is (k ∈ {−1, 0,+1})

ds2 = −c2dt2 + a(t)2
{

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (6.1)

6.1 First Friedmann equation

The extrinsic curvature of the spatial slices is

Kij = − ȧ(t)

a(t)
gij; K = −3ȧ(t)

a(t)
, (6.2)

whence

T (K) → −(6 − 9ξ)
ȧ2

a2
. (6.3)

Since the spatial slices are (by the definition of FLRW spacetime) constant-curvature hy-

persurfaces we have

Rij =
2k

a2(t)
gij ; R =

6k

a2(t)
. (6.4)

So in any FLRW spacetime

V (g) → V (a) = g0 ζ6 +
6g1k ζ4

a2
+

12(3g2 + g3)ζ
2k2

a4
+

24(9g4 + 3g5 + g6)k

a6
. (6.5)

(Note that the g7 and g8 terms drop out due to the translation invariance in the spatial

slices, and that because of its definition k2n+1 = k and k2n = k2.) In an idealized exact

FLRW spacetime, because of the spatial homogeneity, the spatial integral can be dropped

from the Hamiltonian constraint, which now simplifies to

T (g) + V (g) = 0, (6.6)

leading to the first (vacuum) Friedmann equation (currently in Z = 1 units):

(
1 − 3

2
ξ

)
ȧ2

a2
=

V (a)

6
. (6.7)

This version of the first Friedmann equation will hold in any Hořava-like model in that it

depends only on the symmetries of FLRW spacetime and the general features of the model,
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such as the structure of the kinetric term T (K), and is independent of the specific details

of the potential V (a). For our specific variant of Hořava’s model:

(
1 − 3

2
ξ

)
ȧ2

a2
=

g0 ζ6

6
+

g1k ζ4

a2
+

2(3g2 + g3)ζ
2k2

a4
+

4(9g4 + 3g5 + g6)k

a6
. (6.8)

Going over to c = 1 units, and rearranging somewhat

(
1 − 3

2
ξ

)
ȧ2

a2
+

k

a2
=

Λ

3
+

2(3g2 + g3)ζ
−2k2

a4
+

4(9g4 + 3g5 + g6)ζ
−4k

a6
. (6.9)

So even in the absence of explicit matter fields, the g2 and g3 terms can mimic the effects of

radiation pressure (“dark radiation”), of either sign depending on the sign of the relevant

coupling constants. (See also [6].) Similarly, the g4, g5, and g6 terms can mimic stiff matter

of either sign depending on the sign of spatial curvature and the sign of the relevant coupling

constants. (Recall that for or stiff matter ρ = p and so ρstiff ∝ 1/a6.) Note that the stiff-

matter mimicking term is absent in Hořava’s original model [6]. This is due to the fact

that the the only [κ]6 term in Hořava’s original model is (Cotton)2, and the Cotton tensor

automatically vanishes for the constant curvature spatial slices of a FLRW spacetime.

We now add a cosmological fluid through a purely pragmatic and phenomenological ap-

proach: Working within the cosmological hydrodynamical approximation we approximate

the cosmological stress-energy tensor by two quantities, the density ρ and pressure p, and

simply add them to the vacuum equations by demanding the correct limit as one approaches

classical general relativity. (More fundamentally, we could attempt to derive the matter

contributions from an action principle, but for the present purposes that would be overkill.

A model for the matter sector based on a simple scalar field is outlined in [6, 7], and the re-

sulting Friedmann equations [insofar as there is an overlap] are compatible with our purely

pragmatic approach.) Under these assumptions the first Friedmann equation becomes

(
1 − 3

2
ξ

)
ȧ2

a2
+

k

a2
=

Λ

3
+

2(3g2 + g3)ζ
−2k2

a4
+

4(9g4 + 3g5 + g6)ζ
−4k

a6
+

ρ ζ−2

6
, (6.10)

or equivalently

(
1 − 3

2
ξ

)
ȧ2

a2
+

k

a2
=

Λ

3
+

2(3g2 + g3)ζ
−2k2

a4
+

4(9g4 + 3g5 + g6)ζ
−4k

a6
+

8πGNρ

3
. (6.11)

We this see a controlled deviation from standard cosmology, with the deviations from

standard cosmology being governed (effectively) by three parameters: ξ, (3g2 + g3), and

(9g4 + 3g5 + g6). For a generic Hořava-like model coupled to matter we would have

(
1 − 3

2
ξ

)
ȧ2

a2
=

V (a)

6
+

8πGNρ

3
. (6.12)

It is worth pointing out that the presence of the second and third term in the right hand

side of the first Friedmann equation (6.11) could potentially lead to bouncing solutions

for suitable values of the parameters. However, the behaviour of matter contribution close

to the bounce would be critical and further investigation is needed (see also [10]). In this
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regard it is perhaps worthwhile recalling that a bounce requires overall violation of the

strong energy condition (SEC) in its immediate vicinity [52, 53].

Before going further, a remark is appropriate concerning the passage from the Hamil-

tonian constraint to equation (6.11): Dropping the integral over space depends crucially on

exact homogeneity (hence the emphasis on the word “exact” there). Therefore, this step

will not be possible in more general cosmological contexts, where the universe is not exactly

FLRW, but can instead be interpreted as a large number of almost FLRW sub-regions. In

this case one would have to develop a more complete treatment.3

6.2 Second Friedmann equation

The second Friedmann equation comes from the dynamical equation for the canonical

momentum πij. For the conjugate momentum in a FLRW universe

πij → −(2 − 3ξ)
ȧ

a
gij , (6.13)

and so equation (4.5) takes the form

− a−3∂t

(
a3 (2 − 3ξ)

ȧ

a
gij

)
= 2(2 − 3ξ)

ȧ2

a2
gij +

1

2
T (K) gij + F ij . (6.14)

This leads to

−
(

1 − 3

2
ξ

)
ä

a
gij = +

1

2

(
1 − 3

2
ξ

)
ȧ2

a2
gij +

F ij

2
. (6.15)

Taking the trace

−
(

1 − 3

2
ξ

)
ä

a
= +

1

2

(
1 − 3

2
ξ

)
ȧ2

a2
+

gijF
ij

6
. (6.16)

But from the definition of the forcing term Fij , its trace satisfies

gij F ij = gij
1√
g

δSV

δgij
= − 1

2a2

d
[
V (a) a3

]

da
. (6.17)

So the dynamical equation for the conjugate momentum becomes (Z = 1 units, still

for vacuum)

−
(

1 − 3

2
ξ

)
ä

a
= +

1

2

(
1 − 3

2
ξ

)
ȧ2

a2
− 1

12a2

d
[
V (a) a3

]

da
. (6.18)

In physical (c → 1) units the only change is

−
(

1 − 3

2
ξ

)
ä

a
= +

1

2

(
1 − 3

2
ξ

)
ȧ2

a2
− ζ−4 1

12a2

d
[
V (a) a3

]

da
. (6.19)

3Subsequent to the original appearance of this article, Mukohyama [60] has advocated the viewpoint that,

in such a setting, the integrated Hamiltonian constraint can be re-interpreted as the ordinary Friedmann

equation with the addition of “dark dust” that is comoving with the preferred foliation.
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Adding a (phenomenological) cosmological fluid simply adds a pressure contribution

−
(

1 − 3

2
ξ

)
ä

a
= +

1

2

(
1 − 3

2
ξ

)
ȧ2

a2
− ζ−4 1

12a2

d
[
V (a) a3

]

da
+ 4πGNp. (6.20)

We again see a controlled deviation from standard cosmology, with the deviations from

standard cosmology being governed by ξ and by V (a) which is at this stage of the

calculation arbitrary.

For our specific variant of Hořava’s model the explicit forcing terms Fij also simplify

tremendously in FLRW cosmologies. In particular

(F0)ij → −1

2
gij . (6.21)

(F1)ij → − k

a2(t)
gij . (6.22)

(F2)ij → 6k2

a4(t)
gij . (6.23)

(F3)ij → 2k2

a4(t)
gij . (6.24)

(F4)ij → 108k

a6(t)
gij . (6.25)

(F5)ij → 36k

a6(t)
gij . (6.26)

(F6)ij → 12k

a6(t)
gij . (6.27)

(F7)ij → 0. (6.28)

(F8)ij → 0. (6.29)

That is, inserting suitable dimensional factors

Fij =

{
−g0 ζ6

2
− g1k ζ4

a2
+

2(3g2 + g3)k
2 ζ2

a4
+

12(9g4 + 3g5 + g6)k

a6

}
gij . (6.30)

It is then easy to explicitly verify that for our particular variant of Hořava’s model

Fij =

{
−1

2
V (a) − a

6

dV (a)

da

}
gij = − 1

6a2

d
[
V (a)a3

]

da
gij . (6.31)

The deviations from standard cosmology in our model are governed (effectively) by three

parameters: ξ, and the compound parameters (3g2 + g3) and (9g4 + 3g5 + g6) hiding inside

the potential V (a).

6.3 Third Friedmann equation

By eliminating the ȧ2/a2 term between the first and second Friedmann equations one sees

−
(

1 − 3

2
ξ

)
ä

a
= −

{
1

6
V (a) +

a

12

dV (a)

da

}
= − 1

12a

d
[
V (a)a2

]

da
(6.32)
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Going to c → 1 units, and adding (phenomenological) cosmological pressure and density,

−
(

1 − 3

2
ξ

)
ä

a
= − 1

12a

d
[
V (a)a2

]

da
+

4πGN

3
(ρ + 3p), (6.33)

with V (a) still being arbitrary at this stage. In summary, most of FLRW cosmology sur-

vives with only minimal changes. There is a small change in the “kinetic” part of the

Friedmann equations, easily dealt with by inserting a factor of (1 − 3
2ξ), and in the “po-

tential” the higher-spatial-curvature terms mimic various forms of matter. In our specific

model the V (a) terms mimic radiation pressure (“dark radiation”) and stiff matter.

7 Discussion

The specific extension of Hořava’s model that we have outlined above so far only considers

pure gravity (and a phenomenologically introduced notion of cosmological fluid). It is

however a very definite proposal with a small number of adjustable parameters, (many fewer

adjustable parameters than the standard model of particle physics), making it worthwhile

to put in the additional effort to develop precision tests that would confront this model

with experimental and observational bounds.

At this stage we have investigated the graviton propagators (and weak-field gravita-

tional waves) around flat Minkowski space, both for the spin-0 scalar and spin-2 tensor

gravitons, and demonstrated how they depend on the specific terms in the potential V (g).

The presence and behaviour of the spin-0 mode appear to be worrying, and definitely re-

quire further investigation.4 We have also investigated FLRW cosmologies, and seen how

the Freidmann equations are modified for generic V (g). We have seen that the Friedmann

equations and the graviton propagators are sensitive to different subsets of the coupling

constants and so can in principle probe different parts of the physics.

The most significant theoretical restriction we have retained is Hořava’s “projectabil-

ity” constraint. Our analysis showed that there are a number of reasons why it might

be useful to relax this constraint. Based on the results of this article we can make some

suggestions as to what might happen in the absence of a projectability constraint:

• One would have to modify the use of the integration by parts argument when dis-

carding surface terms. Some of the terms we discarded when constructing our list of

all possible terms appearing in V (g) would have to be retained. (So V (g) would then

contain significantly more than the five renormalizable and four super-renormalizable

terms we focused on in the present article.)

• Without “projectability” the Hamiltonian constraint would become a full super-

Hamiltonian constraint.

• The dynamical equation would then pick up additional terms depending on the gra-

dient and the Hessian of the lapse. (The forcing term Fij would in general be signif-

icantly more complicated.)

4After the original upload of this this article we became aware of reference [56], which also seems to

suggest that serious problems are introduced by the scalar mode.
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• For both ξ 6= 0 and ξ = 0 the flat-space spin-2 tensor graviton propagator we have

calculated would not be affected; while the spin-0 scalar graviton can either eliminated

at the linearized level for ξ 6= 0 under suitable fall-off conditions at spatial infinity,

or collapses to a linear expansion/contraction mode for ξ = 0 (in the specific gauge

used in this article).

• The Friedmann equations we have extracted would not be affected. (The lapse N is

unity in any FLRW spacetime.)

Thus generalizing to arbitrary lapse might not be as difficult as initially envisaged [1], and

this is a worthwhile option to consider.

Turning to the future, the most obvious tests of our current variant of Hořava’s model

would come from the observational limits on Lorentz violations [43–45], but by inspection

the model should also fall into the PPN framework, and specifically be subject to “preferred

frame” effects [54] — this will lead to stringent limits on the size of the Lorentz breaking

parameter ζ arising from solar system physics. Up to this stage we have not had to make

any specific commitment as to how matter (in the form of elementary particles as opposed

to cosmological fluid) couples to the gravitational field: Because the gravitational field is

still completely geometrical, albeit with a “preferred frame”, it seems to us that there is

no intrinsic difficulty in maintaining a “universal” coupling to the gravitational field, and

so there is no need for violations of the equivalence principle in this class of models —

we expect the universality of free fall to be maintained and to not see any likelihood for

non-zero signals in Eötvös-type experiments.

In conclusion we would argue that this is one of very few quantum gravity models that

has any realistic hope of direct confrontation with experiment and observation, and that

it is well worth a very careful look.
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